## Transformations of Logarithmic Functions

- The graph of the logarithmic function $y=a \log _{c}(b(x-h))+k$ can be obtained by transforming the graph of $y=\log _{c} x$. These transformations should be performed in the same manner as those applied to any other function.


## Example 1: Translations of a Logarithmic Function

Sketch the graph of $y=\log _{4}(x+4)-5$ and state the mapping rule, domain and range, $x$ - and $y$-intercepts, and equation of the asymptote.

## Solution:

Begin with the graph of $y=\log _{4} x$. Think of $y=\log _{4} x$ as $4^{y}=x$. Choose "nice" values of $y$ first and then determine the $x$-values. Next, identify the transformations on this function to create $y=\log _{4}(x+4)-5$.

- The base graph must be translated $\qquad$ .

Mapping rule: $(x, y) \rightarrow$ $\qquad$ .

- Complete each table of values and sketch the graphs of both functions.

| $y=\log _{4} x$ |  |
| :---: | :---: |
| x | y |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $y=\log _{4}(x+4)-5$ |  |
| :---: | :---: |
| $x$ | $y$ |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

For the function $y=\log _{4}(x+4)-5$ :
Domain: $\qquad$
Range: $\qquad$
x-intercept: $\qquad$
$y$-intercept: $\qquad$
Equation of the vertical asymptote: $\qquad$


## Example 2: Reflections and Stretches of Logarithmic Functions

Sketch the graph of $y=-\log _{2} 4 x$ and state the mapping rule, domain and range, $x$ - and $y$-intercepts, and equation of the asymptote.

## Solution:

Begin with the graph of $y=\log _{2} x$. Think of $y=\log _{2} x$ as $2^{y}=x$. Choose "nice" values of $y$ first and then determine the $x$-values. Next, identify the transformations on this function to create $y=-\log _{2} 4 x$.

- The base graph must be $\qquad$ .

Mapping rule: $(x, y) \rightarrow$ $\qquad$ .

- Complete each table of values and sketch the graphs of both functions.

| $y=\log _{2} x$ |  |
| :---: | :---: |
| $x$ | $y$ |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $y=-\log _{2} 4 x$ |  |
| :---: | :---: |
| x | y |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

For the function $y=-\log _{2} 4 x$ :
Domain: $\qquad$
Range: $\qquad$
x-intercept: $\qquad$
$y$-intercept: $\qquad$
Equation of the vertical asymptote: $\qquad$

## Example 3: Combine Transformations

Sketch the graph of $y=-2 \log _{3}(x-3)+5$ and state the mapping rule, domain and range, $x$ - and $y$-intercepts, and equation of the asymptote.

## Solution:

Begin with the graph of $y=\log _{3} x$. Think of $y=\log _{3} x$ as $3^{y}=x$. Choose "nice" values of $y$ first and then determine the $x$-values. Next, identify the transformations on this function to create $y=-2 \log _{3}(x-3)+5$.

- The base graph must be $\qquad$
$\qquad$ .

Mapping rule: $(x, y) \rightarrow$ $\qquad$ .

- Complete each table of values and sketch the graphs of both functions.

| $y=\log _{3} x$ |  |
| :---: | :---: |
| x | y |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  | | $y=-2 \log _{3}(x-3)+5$ |  |
| :---: | :---: |
| x | y |
|  |  |
|  |  |
|  |  |
|  |  |

For the function $y=-2 \log _{3}(x-3)+5$ :
Domain: $\qquad$
Range: $\qquad$
x-intercept: $\qquad$
$y$-intercept: $\qquad$
Equation of the vertical asymptote: $\qquad$


## Example 4: Determine the Equation of a Logarithmic Function Given Its Graph

a. The transformed graph illustrated in the diagram below can be generated by stretching and reflecting the graph of $y=\log _{4} x$. Determine the equation of the transformed graph.

b. The transformed graph illustrated in the diagram below can be generated by stretching the graph of $y=\log _{4} x$. Determine the equation of the transformed graph.


## Solution:

a. $\qquad$ b. $\qquad$

## Example 5: Use Transformations of an Exponential Function to Model a Situation

There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, F, of flower species that a butterfly feeds on and the number, B, of butterflies observed can be modeled by the function $F=-2.641+8.958 \log B$.

Predict the number of butterfly observations in a region with 25 flower species.


## Example 6: Sketch Graphs of Transformed Logarithmic Functions

Without using a mapping rule or a table of values, sketch each of the logarithmic functions given below. Include the correct location of the vertical asymptote. For the point $(1,0)$ on the base function, determine the coordinates of the corresponding image point on the transformed function (Use a mapping rule for this point only).

| $y=\log _{2}(3(x-5))+1$  | $y=-\log _{2}(3(x-5))+1$  | $y=\log _{2}(-3(x-5))+1$  |
| :---: | :---: | :---: |
| $y=-\log _{2}(-3(x-5))+1$  | $y=2 \log _{\frac{1}{3}}(x+4)-2$  | $y=-2 \log _{\frac{1}{3}}(x+4)-2$  |
| $y=2 \log _{\frac{1}{3}}(-(x+4))-2$  | $y=-2 \log _{\frac{1}{3}}(-(x+4))-2$  | $y=-\frac{1}{2} \log _{4}(-3(x+1))+3$  |

## EXTRA PRACTICE:

The transformed graph shown on the grid can be generated by stretching and translating the graph of $y=\log _{2} x$. Determine the equation of the transformed graph.


The transformed graph shown on the grid can be generated by translating the graph of $y=\log _{4} x$. Determine the equation of the transformed graph.


The transformed graph shown on the grid can be generated by reflecting, stretching and translating the graph of $y=\log _{3} x$. Determine the equation of the transformed graph.


The transformed graph shown on the grid can be generated by reflecting, stretching and translating the graph of $y=\log _{5} x$. Determine the equation of the transformed graph.


